Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Nucleic Acids Res ; 50(14): 8168-8192, 2022 08 12.
Article in English | MEDLINE | ID: covidwho-1961119

ABSTRACT

Nucleocapsid protein (N-protein) is required for multiple steps in betacoronaviruses replication. SARS-CoV-2-N-protein condenses with specific viral RNAs at particular temperatures making it a powerful model for deciphering RNA sequence specificity in condensates. We identify two separate and distinct double-stranded, RNA motifs (dsRNA stickers) that promote N-protein condensation. These dsRNA stickers are separately recognized by N-protein's two RNA binding domains (RBDs). RBD1 prefers structured RNA with sequences like the transcription-regulatory sequence (TRS). RBD2 prefers long stretches of dsRNA, independent of sequence. Thus, the two N-protein RBDs interact with distinct dsRNA stickers, and these interactions impart specific droplet physical properties that could support varied viral functions. Specifically, we find that addition of dsRNA lowers the condensation temperature dependent on RBD2 interactions and tunes translational repression. In contrast RBD1 sites are sequences critical for sub-genomic (sg) RNA generation and promote gRNA compression. The density of RBD1 binding motifs in proximity to TRS-L/B sequences is associated with levels of sub-genomic RNA generation. The switch to packaging is likely mediated by RBD1 interactions which generate particles that recapitulate the packaging unit of the virion. Thus, SARS-CoV-2 can achieve biochemical complexity, performing multiple functions in the same cytoplasm, with minimal protein components based on utilizing multiple distinct RNA motifs that control N-protein interactions.


Subject(s)
Coronavirus Nucleocapsid Proteins , RNA, Double-Stranded , SARS-CoV-2 , Binding Sites , Coronavirus Nucleocapsid Proteins/chemistry , Phosphoproteins/chemistry , RNA, Double-Stranded/genetics , RNA, Viral/genetics , RNA-Binding Proteins/metabolism , SARS-CoV-2/genetics , Temperature
2.
Mol Cell ; 80(6): 1078-1091.e6, 2020 12 17.
Article in English | MEDLINE | ID: covidwho-1386333

ABSTRACT

We report that the SARS-CoV-2 nucleocapsid protein (N-protein) undergoes liquid-liquid phase separation (LLPS) with viral RNA. N-protein condenses with specific RNA genomic elements under physiological buffer conditions and condensation is enhanced at human body temperatures (33°C and 37°C) and reduced at room temperature (22°C). RNA sequence and structure in specific genomic regions regulate N-protein condensation while other genomic regions promote condensate dissolution, potentially preventing aggregation of the large genome. At low concentrations, N-protein preferentially crosslinks to specific regions characterized by single-stranded RNA flanked by structured elements and these features specify the location, number, and strength of N-protein binding sites (valency). Liquid-like N-protein condensates form in mammalian cells in a concentration-dependent manner and can be altered by small molecules. Condensation of N-protein is RNA sequence and structure specific, sensitive to human body temperature, and manipulatable with small molecules, and therefore presents a screenable process for identifying antiviral compounds effective against SARS-CoV-2.


Subject(s)
COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Genome, Viral , Nucleocapsid/metabolism , RNA, Viral/metabolism , SARS-CoV-2/metabolism , Animals , Antiviral Agents/pharmacology , COVID-19/genetics , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/genetics , Drug Evaluation, Preclinical , HEK293 Cells , Humans , Nucleocapsid/genetics , Phosphoproteins/genetics , Phosphoproteins/metabolism , SARS-CoV-2/genetics , Vero Cells , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL